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ABSTRACT

The ecological impacts of nighttime light pollution have been a longstanding source of concern, accentuated by realized
and projected growth in electrical lighting. As human communities and lighting technologies develop, artificial light
increasingly modifies natural light regimes by encroaching on dark refuges in space, in time, and across wavelengths. A
wide variety of ecological implications of artificial light have been identified. However, the primary research to date is
largely focused on the disruptive influence of nighttime light on higher vertebrates, and while comprehensive reviews
have been compiled along taxonomic lines and within specific research domains, the subject is in need of synthesis
within a common mechanistic framework. Here we propose such a framework that focuses on the cross-factoring of the
ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways in which
light influences biological systems, particularly the distinction between light as a resource and light as an information
source. We review the evidence for each of the combinations of this cross-factoring. As artificial lighting alters natural
patterns of light in space, time and across wavelengths, natural patterns of resource use and information flows may be
disrupted, with downstream effects to the structure and function of ecosystems. This review highlights: (i) the potential
influence of nighttime lighting at all levels of biological organisation (from cell to ecosystem); (ii) the significant impact
that even low levels of nighttime light pollution can have; and (iii) the existence of major research gaps, particularly in
terms of the impacts of light at population and ecosystem levels, identification of intensity thresholds, and the spatial
extent of impacts in the vicinity of artificial lights.
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I. INTRODUCTION

It has been argued that the biological world is organized
largely by light (Ragni & D’Alcalà, 2004; Foster &
Roenneberg, 2008; Bradshaw & Holzapfel, 2010). The
rotation of the Earth partitions time into a regular cycle
of day and night (giving variation in light intensity of
approximately 10 orders of magnitude; Table 1), while its
orbital motion and the tilt of its axis cause seasonal variation
in the length of time that is spent under conditions of light
and darkness in each cycle. These major changes are overlain
by more local variation caused by weather conditions, and
the effect of the monthly lunar cycle on nighttime light.
However, for any given latitude the light regime has been
consistent for extremely long periods of geological time,
providing a rather invariant context, and a very reliable set
of potential environmental cues, against which ecological
and evolutionary processes have played out.

Artificial lighting is a common characteristic of human
settlement and transport networks (Boyce, 2003; Schreuder,
2010). The spread of electric lighting in particular has
provided a major perturbation to natural light regimes,
and in consequence arguably a rather novel environmental
pressure, disrupting natural cycles of light and darkness
(Verheijen, 1958, 1985; Outen, 1998; Health Council of
the Netherlands, 2000; Longcore & Rich, 2004; Rich &
Longcore, 2006a; Navara & Nelson, 2007; Hölker et al.,
2010a,b; Bruce-White & Shardlow, 2011; Perkin et al., 2011).
Changes in light regime can be characterized as changes
in the spatial distribution, the timing and the spectral
composition of artificial light sources. As human communities
and lighting technologies develop, artificial light increasingly
encroaches on dark refuges in space, in time, and across
wavelengths.

(1) Space

Urbanisation, population growth and economic develop-
ment have led to rapid, and ongoing, increases in the density
and distribution of artificial lighting over recent decades
(Fig. 1A; Riegel, 1973; Holden, 1992; Cinzano, Falchi &
Elvidge, 2001; Cinzano, 2003; Hölker et al., 2010a). A wide
variety of lighting devices contribute, including public street
lighting, advertising lighting, architectural lighting, domes-
tic lighting and vehicle lighting. The highest intensities of
artificial light are experienced in the close vicinity (within
metres to tens of metres) of light sources. Within illuminated
urban and suburban areas, direct light from street lighting,
domestic and commercial sources, and light reflected from
the surrounding surfaces, can create a highly patchy light
environment. Over much larger areas surrounding towns
and cities, a somewhat lower intensity of diffuse background
light derives from ‘sky glow’, artificial light scattered in the
lower atmosphere. Under cloudy conditions in urban areas,
the sky glow effect has been shown to be of an equivalent or
greater magnitude than high-elevation summer moonlight
(Kyba et al., 2011a); it has been estimated that around 23%

Table 1. Variation in levels of illuminance. Although widely
used, note that lux measurement places emphasis on brightness
as perceived by human vision

Lux

Full sunlight 103000
Partly sunny 50000
Cloudy day 1000–10000
Full moon under clear conditions 0.1–0.3
Quarter moon 0.01–0.03
Clear starry night 0.001
Overcast night sky 0.00003–0.0001

Operating table 18000
Bright office 400–600
Most homes 100–300
Main road street lighting (average

street level illuminance)
15

Lighted parking lot 10
Residential side street (average street

level illuminance)
5

Urban skyglow 0.15

From data in British Standards Institute (2003), Rich & Longcore
(2006b), and Dick (2011).

of the United States, 37% of the European Union, 54% of
Japan and 5% of the land surface area of the world regularly
exceeds a similar threshold (Cinzano et al., 2001).

(2) Time

Early municipal lighting systems often functioned only
on moonless nights or prior to midnight (Jakle, 2001).
Throughout the 20th century, the manufacture of cheaper
lighting technologies led to more persistent street lighting in
developed cities, typically from dusk until dawn, 365 days
a year. Lights in commercial, industrial and residential
premises may be kept permanently on or switched on
intermittently during the hours of darkness for reasons of
security or convenience, and amenity lighting, for example
floodlighting of sports pitches, is often concentrated in
the hours following sunset, leading to a varying light
environment throughout the night (Fig. 1B). Economic
pressures, limited energy supply and/or efforts to minimize
energy consumption and carbon emissions have resulted
in constraints on the timing of nighttime lighting in
many regions of the world, and, led by developments in
technology allowing automated timing and control, dimming
or switching off of municipal lighting for periods during the
night is being adopted in some developed countries (e.g.
Lockwood, 2011).

(3) Spectral composition

Different forms of artificial lighting have unique spectral
signatures, each emitting light at varying intensities over a
distinctive range of wavelengths (Fig. 1C; Thorington, 1985;
Boyce, 2003; Elvidge et al., 2010; van Langevelde et al.,
2011). These spectral signatures differ from those of natural
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914 K.J. Gaston and others

(A)

(B)

(C)

Fig. 1. Artificial nighttime light varies in space, time and along electromagnetic spectrum. (A) Spatial variation in relative brightness
trends of nighttime lights in Europe, using annual DMSP satellite data from 1992 to 2001 inclusive from NOAA National
Geophysical Data Center http://www.ngdc.noaa.gov/dmsp/downloadV4composites.html. As there is no onboard cross-calibration
for this dataset between years and satellites, values are calibrated for sensor drift relative to a control area [the island of Sicily,
following Elvidge et al. (2009); red – rate of change in light significantly greater than the control region; blue – rate of change
significantly lower than the control region]. Economic, technological and policy factors cause clear contrasts among countries and
regions. (B) Temporal change in spectral irradiance of ambient light in grassland at Tremough, UK from day (blue) to night (black),
22.11.11; peaks at 19:30 h from indoor fluorescent lighting from nearby offices, and at 22:00 h from footpath lighting. (C) Spectral
composition of main electric lighting types used since 1950, from data at http://www.ngdc.noaa.gov/dmsp/spectra.html. In (A)
all illustrated changes are relative to the net change in the control region, calculated from cross-calibrated annual images using
sixth-order regression with Sicily’s nighttime lights. While Sicily was selected as the most suitable calibration region among several
candidates by Elvidge et al. (2009), changes in lighting have undoubtedly occurred during this period on the island, and hence blue
regions do not necessarily indicate decreasing absolute brightness during this period. Only pixels with statistically significant relative
change over time at P < 0.05 are shown, calculated from Spearman’s rank correlation on annual values from 1992 to 2001 inclusive.
No trends are detected for highly urban areas where satellite sensor values are saturated.

direct and diffuse sunlight, twilight and moonlight, with
certain types of lighting restricted to very narrow bandwidths,
while others emit over a wide range of wavelengths. Early
electric street lighting relied on incandescent bulbs (Jakle,
2001), emitting primarily in yellow wavelengths, while low-
pressure sodium lighting, widely adopted in the 1960s and
1970s, emits a single narrow peak in the visible spectrum at
589.3 nm, giving objects a distinctive monochromatic orange
hue. More recent light technologies emit over a broad range

of wavelengths (high-pressure sodium lighting emits a yellow
light allowing some colour discrimination; high-intensity
discharge lamps emit a whiter light, with significant peaks
in blue and ultra-violet wavelengths, and LED-based white
street lighting typically emits at all wavelengths between
around 400 and 700 nm, with peaks in the blue and green;
Elvidge et al., 2010). Over recent decades the spectral
diversity of light sources has grown (Frank, 1988), and the
trend towards adopting lighting technologies with a broader
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Nighttime light pollution 915

Fig. 2. Potential pathways for ecosystem effects of light pollution. Light affects organisms via the visual system in animals, the
photosynthetic system in plants, and through various non-visual pigments in both plants and animals. The effects of artificial light are
mediated by the spatial pattern, wavelengths and/or timing of the light sources (here shaded bands represent filters through which
effects are dependent on space, wavelength and/or timing). Ecological effects can be characterised as disruption of information flows
and/or changes in resource use and availability. The extent to which these effects influence ecosystem processes is currently largely
unknown.

spectrum of ‘white’ light is likely to increase the potential for
ecological impacts (including through changes in the colour
of sky glow; Kyba et al., 2012).

In combination, the increasing spatial, temporal and
spectral distribution of nighttime light pollution provides
the potential for major influences on ecological and
evolutionary processes (Fig. 2; Navara & Nelson, 2007; van
Langevelde et al., 2011). Substantial attention has been paid
to catastrophic events, such as the mortality that can follow
from the disorientation of hatchling turtles and of birds by
nighttime lighting (e.g. Howell, Laskey & Tanner, 1954;
Verheijen, 1958, 1985; McFarlane, 1963; Reed, Sincock &
Hailman, 1985; Witherington & Bjorndal, 1991; Peters &
Verhoeven, 1994; Salmon et al., 1995; Le Corre et al., 2002;
Jones & Francis, 2003; Black, 2005; Tuxbury & Salmon,
2005; Gauthreaux & Belser, 2006; Montevecchi, 2006; Evans
et al., 2007b; Lorne & Salmon, 2007; Gehring, Kerlinger &
Manville, 2009; Tin et al., 2009; Rodríguez, Rodríguez &
Lucas, 2012). However, a much broader set of implications
has been identified (Longcore & Rich, 2004; Hölker et al.,
2010a; Perkin et al., 2011). In consequence, and echoing
earlier statements (e.g. Verheijen, 1985), there have been
several recent calls for a much improved understanding of
these implications (e.g. Health Council of the Netherlands,
2000; Sutherland et al., 2006; The Royal Commission on
Environmental Pollution, 2009; Hölker et al., 2010a,b; Perkin
et al., 2011; Fox, 2013).

Part of the challenge in providing this improved
understanding lies in organizing the knowledge that already
exists and in identifying the principal gaps. The literature
that has developed to date is scattered, and largely lacks
synthesis within a common mechanistic framework. Previous
attempts to review this material have done so by taxonomic
group (Rich & Longcore, 2006b – with sections on mammals,
birds, reptiles and amphibians, fishes, invertebrates, plants),
by different processes and/or levels of biological organization
(Longcore & Rich, 2004 – with sections on behavioural and
population ecology, community ecology, ecosystem effects;
Longcore & Rich, 2006 – with sections on physiological
ecology, behavioural and population ecology, community
ecology, ecosystem ecology), and by research domain (Perkin
et al., 2011 – with sections on dispersal, evolution, ecosystem
functioning, interactions with other stressors).

Here we propose a framework that focuses foremost on
the cross-factoring (Table 2) of the ways in which artificial
lighting alters natural light regimes (spatially, temporally,
and spectrally), and the ways in which light influences bio-
logical systems, particularly the distinction between light
as a resource and light as an information source (Fig. 3).
Reviews of the literature to date have highlighted examples
of each of the different combinations of such a cross-
factoring. However, many studies do not report, for example,
the spectral properties, intensity, duration and/or spa-
tial extent of the light regime, making it hard to draw
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916 K.J. Gaston and others

Table 2. Cross-factoring of the effects of nighttime lighting on the spatial, temporal and spectral components of light regimes, and
of the organismal effects of light as a resource and as an information source

Space Time Spectra

Light as a
resource

Photosynthesis Very localized, close to lights,
probably only ecologically
significant in naturally dark
habitats (e.g. caves).

Most effective when light is
continuous throughout
naturally dark
period – effects will be
reduced with duration of
lighting.

Effective at broad range of
wavelengths between 400 and
700 nm, overlapping lighting
systems for human vision; peak
sensitivities in red and blue.

Partitioning of
activity between
day and night

Impacts could be widespread, as
sky glow effects allow
increased nocturnal activity, or
highly localized, as direct light
in the vicinity of lamps allows
diurnal/crepuscular species to
extend their period of activity
into hours of natural darkness.
Spatial heterogeneity in light
and dark patches may lead to
spatial partitioning of the light
resource.

Probably most critical around
dusk and dawn, but
continuous lighting may
extend effects throughout
the night.

Effective wavelengths likely to
vary among taxa.

Dark repair and
recovery

Could be widespread – few data
available on physiological
mechanisms and required
light intensities across species.

Could be effective throughout
night; short pulses of light
may be sufficient to disrupt
melatonin production.

Emission in blue and UV-A may
promote DNA repair through
photoreactivation; blue light
may disrupt melatonin
production in higher
vertebrates.

Light as an
information
source

Circadian clocks
and
photoperiodism

Effects could be widespread, but
recorded instances usually in
close proximity to light sources
(e.g. retention of leaves in
deciduous plants around street
lighting).

Continuous and intermittent
low lighting both shown to
have effects; short pulses of
light during night are
sufficient to disrupt both
circadian clocks and
photoperiodism in some
species.

Effects likely to vary among taxa;
plants may be sensitive to the
ratio of red to far-red light via
the phytochrome pathway,
rather than absolute intensity
at a given wavelength. Plants
and animals may also respond
through to blue light through
the cryptochrome pathway.

Visual perception Could be widespread over large
areas; sky glow effects may be
equal to or exceeding
moonlight intensities.

Probably most effective
around dawn and dusk,
extending effective period
of activity of normally
diurnal and crepuscular
species, but may also allow
activity throughout night
(e.g. wading birds).

Effective wavelengths will vary
among species. Broader
spectrum light sources will
tend to give better colour
definition and aid
identification of objects from
their background in most
species.

Spatial orientation
and light
environment

Species are often highly sensitive
to directional light even at low
intensity, so isolated light
sources can have a major
disruptive effect on navigation
across spatial scales. Diffuse
sources, such as atmospheric
sky glow, may mask natural
light signals used for
navigation, including moon
position and polarized
atmospheric light.

Intermittent light may have
reduced impact – lighting
during key periods of
movement (e.g. during
migration events) may be
most significant.

Lights with high UV (e.g.
mercury vapour lamps) shown
to be disruptive in many
insects; red light in some bird
species.

general conclusions applicable outside their geographical and
taxonomic limits. For this reason perhaps, despite the global
nature of increases in artificial light, the ecological impacts
of light pollution are often considered to be localised and
restricted to a few vulnerable species or taxonomic groups.

Considering these individual studies within our proposed
framework: (i) helps to unify understanding of particular
effects of light pollution across taxa, and to draw conclusions
relevant to whole ecosystems; (ii) highlights the mechanisms
behind the observed ecological effects of light pollution, and
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Fig. 3. Cross-factoring of the effects of nighttime lighting on
the spatial, temporal and spectral components of light regimes,
and of the organismal effects of light as a resource and as an
information source.

defines clear criteria for future ecological studies; and (iii)
provides guidance in detecting, predicting and mitigating
against current and future adverse effects of light pollution.

In the sections below we review the evidence for each
of the combinations of the cross-factoring. To avoid undue
redundancy, and a bias towards certain well-studied systems,
we have not attempted to provide an exhaustive list of studies
on the ecological effects of light pollution, but rather in each
section we aim to illustrate the key issues and identify progress
and opportunities for further work.

II. LIGHT AS A RESOURCE

Both light and darkness can act as a resource for organisms
(Kronfeld-Schor & Dayan, 2003; Gerrish et al., 2009).
Through photosynthesis, energy is captured by autotrophs in
the form of light and cycled through ecosystems; furthermore,
many physiological processes and behavioural activities
require either light or dark conditions to operate. The balance
between hours of light and of darkness constrains the time
available for these processes and so changes in the availability
of both light and darkness as a resource can have positive
or negative effects on an organism, dependent on whether
it is the presence or absence of light that poses the greater
constraint.

(1) Photosynthesis

In green plants, light is absorbed for photosynthesis by
chlorophylls and carotenoids at wavelengths between 400
and 700 nm. While this range encompasses much of the
visible emissions by artificial lights, in most cases the
levels of photosynthetically active radiation (PAR) associated
with nighttime light pollution are extremely low relative
to sunlit conditions (typically less than 0.5 μmol m−2 s−1

compared with between 100 and 2000 μmol m−2 s−1 for
sunlit conditions) and the effect of light pollution on
net carbon fixation is likely to be negligible in most
cases. Although Raven & Cockell (2006) calculate that the
combined PAR flux from sky glow in an urban area and
moonlight from a full moon could theoretically exceed the
lower limit for photosynthesis, in most cases only direct
illumination in the close vicinity of light sources, for example
the leaves of trees within a few centimeters of street lights, is
likely to be sufficient to maintain net carbon fixation during
nighttime and at lower light levels offset nocturnal respiratory
losses. The consequences of this highly localized effect on
individual plants and on ecosystems are largely unexplored.

One environment in which light pollution is known to have
marked effects on ecosystems through photosynthesis is in
artificially lit cave systems. The introduction of lighting into
caves used as visitor attractions promotes highly localized
growth of ‘lampenflora’ communities completely dependent
on artificial light as a source of energy. These communities
may include autotrophs such as photosynthetic algae, mosses
and ferns growing in the vicinity of light fixtures, as well
as fungi and other heterotrophs utilizing the input of
organic matter (Johnson, 1979). These communities may
displace or disrupt the trophic ecology of energy-limited
cave ecosystems. Algal growth on the walls can also seriously
damage and obscure geological and archaeological interest
within caves (Lefèvre, 1974), and is an issue of some concern.

(2) Partitioning of activity between day and night

Partitioning of time has been thought to be a major
way in which the ecological separation of species is
promoted (Kronfeld-Schor & Dayan, 2003). Temporal niche
partitioning between diurnal, crepuscular and nocturnal
species occurs as they avoid competition by specializing
in a particular section along the light gradient (Gutman
& Dayan, 2005). Indeed, whilst ecological and evolutionary
studies have focused foremost on diurnal species, a substantial
proportion of species is adapted to be active during low-
light conditions (Lewis & Taylor, 1964; Hölker et al.,
2010b). Natural variation in nighttime lighting, particularly
in moonlight due to the phase of the moon and cloud-cover
conditions, has been shown to affect the timing of activity in a
range of species (e.g. Imber, 1975; Morrison, 1978; Gliwicz,
1986; Kolb, 1992; Tarling, Buchholz & Matthews, 1999;
Baker & Dekker, 2000; Fernandez-Duque, 2003; Kappeler
& Erkert, 2003; Beier, 2006; Woods & Brigham, 2008;
Gerrish et al., 2009; Penteriani et al., 2010, 2011; Smit
et al., 2011). Spatial gradients in the amount and seasonal
distribution of biologically useful semi-darkness (including
moonlight and twilight) have been proposed as drivers
of patterns of behaviour (Mills, 2008). Visually orienting
predators have a reduced ability to detect prey in dark
conditions, and may increase their activity or achieve higher
rates of predation success under lighter conditions; prey
species may reduce activity in lighter conditions in response
to a perceived increased risk of predation. Some shorebird
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species use visual foraging by day but tactile foraging
during hours of darkness – nighttime light may allow them
to use visual foraging throughout the night (Rojas et al.,
1999). Moonlight-driven cycles in predator–prey activity
have been observed in such taxonomically diverse species as
zooplankton and fish (Gliwicz, 1986), predaceous arthropods
(Tigar & Osborne, 1999), blue petrels Halobaena caerulea and
brown skuas Catharacta skua (Mougeot & Bretagnolle, 2000),
owls and rodents (Clarke, 1983), and lions Panthera leo and
humans (Packer et al., 2011). Prey species may respond
to the increased risk of predation at night by decreasing
their activity (e.g. Kotler, 1984; Daly et al., 1992; Vásquez,
1994; Skutelsky, 1996; Kramer & Birney, 2001) or changing
their microhabitat to utilize dark spaces such as the shelter of
bushes (e.g. Price, Waser & Bass, 1984; Kolb, 1992; Topping,
Millar & Goddard, 1999), and may compensate by greater
activity at dawn and/or dusk; Daly et al. (1992) have shown
how such ‘crepuscular compensation’ in response to high
nocturnal predation rates can lead to increasing rates of
predation by diurnal predators as prey activity encroaches
into daylight hours. Diurnal and crepuscular predators may
become facultative nocturnal predators under suitable light
conditions (e.g. Milson, 1984; Combreau & Launay, 1996;
Perry & Fisher, 2006). Conversely, nocturnal predators that
rely on non-visual clues to hunt, such as snakes, may decrease
activity during lighter nights in order to avoid detection
by prey and their own predators (Bouskila, 1995; Clarke,
Chopko & Mackessy, 1996). Behavioural changes are likely
to induce changes in energetic costs; Smit et al. (2011) have
shown that freckled nightjars Caprimulgus tristigma respond to
dark nights by entering torpor, while moonlit nights allow
foraging as food availability is sufficient to overcome the
energetic costs of thermoregulation.

Despite the large number of studies that demonstrate the
effect of moonlight in altering the behaviour of species, there
have been relatively few that have formally examined the
effect of artificial light in altering behaviour or restructuring
temporal niche partitioning. Reports have long existed
that some diurnal species exploit the ‘night-light niche’
and become facultatively nocturnal in urban environments,
for example jumping spiders (Wolff, 1982; Frank, 2009),
reptiles (Garber, 1978; Perry & Fisher, 2006), and birds
(Martin, 1990; Negro et al., 2000; Santos et al., 2010).
In rodents, Bird, Branch & Miller (2004) have shown
that foraging behaviour in beach mice Peromyscus polionotus

is restricted by artificial lighting, while Rotics, Dayan &
Kronfeld-Schor (2011) have shown that while the nocturnal
spiny mouse species Acomys cahirinus restricted activity under
artificial light, its diurnal congener Acomys cahirinus did not
expand its activity to compete during the hours of artificial
illumination.

There are few known examples of artificial light as
a resource directly mediating behaviour; although some
species have been found to increase foraging activities and
antipredator vigilance under such conditions (e.g. Biebouw
& Blumstein, 2003), the vision of some nocturnal predators
has been shown to be impaired by artificial lighting and their

foraging success reduced (e.g. Buchanan, 1993). Reports
of the effects of light in providing resources by attracting
concentrations of prey are more frequent (e.g. Heiling, 1999;
Buchanan, 2006). Increased foraging around street lights has
been widely reported for some species of bats (e.g. Rydell,
1991, 1992, 2006; Blake et al., 1994; Polak et al., 2011),
particularly around lamps which emit at low wavelengths,
attract large numbers of insects, and which may interfere
with prey defences (Svensson & Rydell, 1998); Rydell (2006)
regards the habit of feeding around lights by bats as having
become the norm for many species. Other bat species avoid
lights (Kuijper et al., 2008; Stone, Jones & Harris, 2009),
possibly to minimise the risk of avian predation (Speakman,
1991; Rydell, Entwistle & Racey, 1996). Similarly, nocturnal
orb-web spiders Larinioides sclopetarius preferentially build
webs in areas which are well lit at night, where higher
densities of insect prey are available; a behaviour that appears
to be genetically predetermined rather than learnt (Heiling,
1999). This suggests the possibility of evolutionary responses
to utilise novel niches created by artificial lighting.

The relative lengths of night and day can influence
foraging opportunities, predation and/or competition costs
and the trade-offs amongst these (e.g. Clarke, 1983;
Falkenberg & Clarke, 1998; Berger & Gotthard, 2008).
In turn this can influence the abundances of organisms (e.g.
Carrascal, Santos & Tellería, 2012). Presumably nighttime
lighting that served effectively to change perceived night and
day lengths could amplify these effects.

(3) Dark repair and recovery

It has been suggested that continuous periods of darkness
are critical for certain processes controlling repair and
recovery of physiological function in many species, and hence
that darkness can be seen as a resource for physiological
activity. Seeking an explanation for an observed increase
in ozone injury in plants at high latitudes, Vollsnes et al.
(2009) have shown that dim nocturnal light, simulating the
northern Arctic summer, inhibits recovery from leaf damage
caused by atmospheric ozone in subterranean clover Trifolium
subterraneum. Futsaether et al. (2009) found a similar result in
red clover Trifolium pretense but not in white clover Trifolium
repens. In Arabidopsis thaliana, Queval et al. (2007) have shown
links between day length and the rate of oxidative cell death.
Since the patterns of anthropogenic light pollution and ozone
pollution are spatially correlated on a global scale (see e.g.
Cinzano et al., 2001; Ashmore, 2005), the extent to which
low-intensity nighttime light could affect repair and recovery
from ozone damage requires further investigation.

Gerrish et al. (2009) argued that hours of darkness provide
organisms with time for repair to DNA damage to cells caused
by solar UV-B radiation (285–315 nm). However, light in the
blue to UV-A portion of the spectrum is necessary for DNA
repair through photoreactivation via the photolyase enzyme
(with maximum absorption at 380 and 440 nm), while ‘dark
repair’ through the excision repair pathways is independent
of light (Sutherland, 1981; Britt, 1996; Sinha & Häder, 2002).
The role of darkness here is presumably limited to the lack
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of damage due to solar UV-B radiation during the night.
Since artificial lighting typically emits negligible amounts
of UV-B radiation it is unlikely that light pollution either
increases DNA damage or inhibits the processes of repair in
this instance; indeed, light sources emitting in the blue and
UV-A may have an effect in promoting DNA repair through
photoreactivation.

III. LIGHT AS AN INFORMATION SOURCE

The direction, duration and spectral characteristics of
natural light are widely used by organisms as sources of
information about their location, the time of day and year,
and the characteristics of their natural environment (Neff,
Fankhauser & Chory, 2000; Ragni & D’Alcalà, 2004).
Indeed, considerable energetic costs are often borne in
order to maintain the necessary sensory systems (Niven
& Laughlin, 2008). Artificial lighting can disrupt this flow of
information and provide misleading cues. The wavelengths
of light are critical to its efficacy as an information
source due to the varying spectral sensitivity of organisms’
receptors. In vascular plants, for example, the most well-
studied photoreceptors are phytochromes, which exist in
two photo-interconvertible forms – a biologically inactive
red-light-absorbing form (Pr) which upon absorption of red
light is converted to a biologically active form (Pfr). Pfr is
converted back to Pr on absorbing far-red photons, so under
steady light of a given red/far-red ratio the active form
of phytochrome reaches equilibrium (Lin, 2000; Neff et al.,
2000; Smith, 2000). The phytochrome system plays a key role
in detecting shade and measuring day length, and has been
shown to influence vegetative growth and architecture, the
timing of germination, flowering, bud burst and dormancy
and senescence, and the allocation of resources to roots,
stems and leaves (Smith, 2000). In addition, blue and ultra-
violet light receptors called cryptochromes influence light
responses in many species of algae, higher plants, and animals
(Cashmore et al., 1999), and have been shown to play a role
in regulating circadian clocks in mammals (Thresher et al.,
1998). In animals with vision, complex information on the
spectral composition of light may be derived from several
photoreceptors with varying spectral sensitivities (Kelber,
Vorobyev & Osario, 2003), and in mammals retinal ganglion
cells that are independent of the visual system may be
involved in entraining circadian clocks (Berson, Dunn &
Takao, 2002). In many cases organisms have been shown
to be sensitive to extremely low levels of light at night,
well within levels of anthropogenic light pollution (Kelber
& Roth, 2006; Bachleitner et al., 2007; Evans et al., 2007a;
Frank, Evans & Gorman, 2010).

(1) Circadian clocks and photoperiodism

Three natural periodic cycles in the light regime are detected
by organisms – the daily cycle of day and night, seasonal
changes in day length, and the monthly lunar cycle. The

daily and seasonal cycles in particular provide cues that can
be used to anticipate regular changes in the environment
such as temperature or humidity that also follow a daily or
annual cycle. The lunar cycle has importance for activity
and reproduction in some species, which may be responding
directly to the availability of light as a resource (see section
II) alternatively they may utilise the lunar light cycle to
anticipate environmental changes connected with nighttime
light or tidal conditions (Taylor et al., 1979), or purely as a
regular cue to synchronise reproductive activity (e.g. Tanner,
1996; Baker & Dekker, 2000; Takemura et al., 2006).

Light may influence circadian patterns of behaviour in
two ways, entrainment and masking, which may be difficult
to distinguish in natural systems. Virtually all plants and
animals possess a circadian clock, an endogenous system that
regulates aspects of their activity and physiology on a cycle
that approximates 24 h, but which in the absence of external
cues may drift out of phase with day and night (Sweeney,
1963). In order for the clock accurately to track the diurnal
cycle, it is regulated by ‘zeitgebers’, environmental cues that
entrain or reset the clock. The light environment is critical
in providing such cues in many species. Entrainment occurs
when regular patterns of light and darkness regulate the
phase and frequency of the endogenous clock (Menaker,
1968). Artificial light after dusk or prior to dawn can cause
phase shifts in the circadian rhythm, delaying or advancing
the cycle. Low levels of light at night may disrupt melatonin
production in fish, birds and mammals, with a wide range of
downstream physiological consequences (Navara & Nelson,
2007; for examples see Cos et al., 2006; Evans et al., 2007a;
Reiter et al., 2007; Bedrosian et al., 2011a,b). Since light
pollution typically occurs both before dawn and after dusk,
it is difficult to predict the effect of any shift in the circadian
clock. In laboratory experiments, entrainment has been
shown to occur at both persistent levels of low light and
with short pulses of relatively bright light (Table 3; Brainard
et al., 1983; Haim et al., 2005; Zubidat, Ben-Shlomo & Haim,
2007; Shuboni & Yan, 2010). The duration and intensity
of light required to disrupt circadian rhythms under field
conditions is unknown, but these studies suggest potential
for impacts on species affected by widespread low-level light
such as urban sky glow or less often considered transient
lighting sources such as vehicle lights (Lyytimäki, Tapio &
Assmuth, 2012).

Exposure to light at night has been shown to disrupt
the circadian cycle of hormone production in humans,
particularly melatonin, which has been linked to an increase
in cancer risk in shift-workers (Stevens, 1987, 2009; Megdal
et al., 2005; Reiter et al., 2011). Melatonin production is
regulated by the circadian clock, which in mammals is
entrained by retinal ganglion cells with a peak sensitivity in
blue light at around 484 nm (Berson et al., 2002). Melatonin
production is similarly reduced in rats under nighttime light
levels of 0.2 lux (Dauchy et al., 1997), and in hamsters at levels
above 1 lux (Brainard et al., 1982), and has been shown to
suppress immune responses and increase the rate of tumour
growth (Dauchy et al., 1997; Bedrosian et al., 2011b). Similar
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Table 3. Examples of the levels at which nighttime lighting has been observed to have biological effects

Species Setting Effect Nighttime lighting Source

Barred owl Strix varia
Long eared owl

Asia wilsonianus
Barn owl Tyto alba
Burrowing owl

Speotyto cunicaria

Lab
. . .

. . .

. . .

Location of prey
. . .

. . .

. . .

1.6 × 10−6 lux*
2.7 × 10−6 lux*

5.7 × 10−6 lux*
2.8 × 10−4 lux*

Dice (1945)
. . .

. . .

. . .

Common toad Bufo bufo Lab Increased prey detection 2.8 × 10−4 lux (constant) Larsen & Pedersen
(1982)

Syrian hamster Mesocricetus
auratus

Lab Altered circadian rhythm 0.01 lux (constant) Evans et al. (2007a)

Salmon Salmo salar Lab Increased prey detection 0.01–5 lux (constant) Metcalfe et al. (1997)
Fruitfly Drosophila melanogaster Lab Increased activity levels and

shifted typical morning and
evening activity peaks into
night

0.03 lux (constant) Bachleitner et al. (2007)

Brown rat Rattus norvegicus Lab Increased rates of tumor
growth and metabolism

0.2 lux (constant) Dauchy et al. (1997)

Brown rat Rattus norvegicus Lab Increased rate of tumor growth 0.21 lux (constant) Cos et al. (2006)
Ringed plover Charadrius

hiaticula
Kentish plover Charadrius

alexandrinus
Grey plover Pluvialis

squatarola
Dunlin Calidris alpina
Redshank Tringa totanus

Field experiment Higher prey intake

. . .

. . .

. . .

. . .

0.74 lux (constant) Santos et al. (2010)

Deer mouse Peromyscus
maniculatus

Lab Reduced nocturnal activity 0.93 lux (constant) Falkenberg & Clarke
(1998)

Prairie Rattlesnake Crotalus
viridis

Lab Reduced activity 1 lux Clarke et al. (1996)

American robin Turdus
migratorius

Field observations Earlier initiation of singing Mean 1.26 lux (range
0.05–3.06 lux;
constant)

Miller (2006)

Leaf-eared mouse Phyllotis
xanthopygus

Lab Reduced nocturnal activity 1.5 lux (constant) Kramer & Birney
(2001)

Leaf-eared mouse Phyllotis
darwini

Lab Predator avoidance and
reduced food consumption

< 2.0 lux (constant) Vasquez (1994)

Siberian hamster Phodopus
sungorus

Lab Suppressed immune response 5 lux (constant) Bedrosian et al. (2011b)

Green and blue-green algae
Mosses

Ferns

Field observations
. . .

. . .

Minimum artificial light
required for continued
photosynthetic growth in
caves

10–50 lux
50–180 lux
250 lux

Johnson (1979)
. . .
. . .

Atlantic salmon Salmo salar Field experiment Altered timing of nocturnal
migration

14 lux (constant; measured
at stream surface)

Riley et al. (2012)

Pond bats Myotis dasycneme Field observations Reduced feeding rate,
disturbed flight pattern

< 30 lux (constant) Kuijper et al. (2008)

Lesser horseshoe bats
Rhinolophus hipposideros

Field experiment Reduced activity, onset of
commuting delayed

51.67 lux (average;
constant)

Stone et al. (2009)

Social vole Microtus socialis Lab Disruption of seasonal
acclimatization of
thermoregulation

450 lux (15 min pulse) Zubidat et al. (2007)

Field mouse Mus booduga Lab Disruption of circadian rhythm 1000 lux (15 min pulse) Sharma et al. (1997)

*Converted from reported values in foot candles.
Note that: (i) in many cases these represent levels of experimental treatments, and precisely where thresholds might lie remains unknown;
and (ii) although widely used, lux measurement places emphasis on brightness at wavelengths perceived by human vision. Studies are
ordered in increasing intensity of light.
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melatonin-mediated effects of nighttime light on immune
function are seen in laboratory studies of birds (Moore
& Siopes, 2000). The requirement for continuous periods
of darkness to entrain the circadian clock and regulate
hormone activity may be widespread amongst animals, yet
the ecological effects of potential disruption of the circadian
clock are unknown.

By contrast, masking occurs when a light stimulus
overrides the endogenous clock; for example artificial light
at night may increase activity in diurnal or crepuscular
species (positive masking) or suppress it in others (negative
masking; see e.g. Santos et al., 2010; Rotics et al., 2011).
The ecological effects of direct entrainment of circadian
clocks by artificial light may be difficult to distinguish from
opportunistic changes in light-resource use or direct effects
of light on behaviour through masking. For example, light
pollution has been shown to advance the initiation of dawn
singing considerably in some temperate bird species in urban
areas (Miller, 2006), with implications for breeding success
(Kempenaers et al., 2010). The extent to which this effect
of light on behaviour is mediated by circadian rhythms, or
whether light triggers this behaviour independently of an
endogenous clock through masking is unknown.

In temperate and polar ecosystems, organisms frequently
use day length as a cue to initiate such seasonal
phenological events as germination, bud formation and
burst, reproduction, senescence, eclosion, diapause, moult,
embryonic development, and migration (e.g. Gwinner, 1977;
Densmore, 1997; Dawson et al., 2001; Niva & Takeda,
2003; Heide, 2006; Cooper et al., 2011). By contrast, species
whose ranges are restricted to lower latitudes are likely
to be less dependent on day length to regulate annual
cycles of activity (although in dry seasonal climates near the
equator even very small differences in seasonal day length
can be utilised by plants to trigger phenological events; see
Rivera et al., 2002). Over evolutionary time species have
adapted to wide variation in the range of day length that
they encounter – in the Permian period deciduous forests
existed in Antarctica at latitudes of 80–85◦S, experiencing
total darkness for months in the winter and 24 h daylight
during summer, a light environment without analogue in
modern forests and unlikely to be within the survivable
range of extant tree phenotypes (Taylor, Taylor & Cúneo,
1992). Photoperiod, and therefore presumably changes in
what is perceived as photoperiod as a result of artificial
lighting, has consequences for a variety of physiological
traits. It has long been observed that certain species of
deciduous tree maintain their leaves for longer in autumn
in the vicinity of street lights (Matzke, 1936), potentially
leaving them exposed to higher rates of frost damage
in late autumn and winter. Experiments in horticultural
systems have shown a wide range of responses to artificial
nighttime lighting, depending both on the species and the
spectral composition of the light source, including delay and
promotion of flowering, and enhanced vegetative growth
(Cathey & Campbell, 1975; Kristiansen, 1988). Animal
species, including lizards (Sceloporus occidentalis; Lashbrook

& Livezey, 1970) and rodents (Microtus socialis; Zubidat et al.,
2007) control their thermoregulatory activity in response to
seasonal changes in photoperiod. Plant physiologists draw
a distinction between ‘long-day’ responses, in which a long
dark period suppresses an effect, and ‘short day’ responses,
in which a long dark period promotes an effect. In animals,
both day length and the relative change in day length may act
as proximal triggers (Vepsäläinen, 1974). Species with a wide
latitudinal range show local adaptation in their photoperiodic
response (Bradshaw, 1976), and photoperiodic control allows
species to coordinate key events in their life cycle with suitable
weather conditions. Photoperiodic response has been shown
to evolve rapidly in an invasive species expanding into
different latitudes, reflecting changing relationships between
the seasonal climate and the information given by day-length
cues (Urbanski et al., 2012). Disruption of this control may
lead to organisms becoming out of step with their climate,
with the timing of other organisms (such as pollinators or food
sources), or unable to adapt to climatic change (Bradshaw,
Zani & Holzapfel, 2004; Bradshaw & Holzapfel, 2010).

The biological rhythms of organisms are known to be
linked across different levels of food webs, with, for example,
plant-herbivore-parasitoid rhythms being synchronized both
as a consequence of bottom-up and top-down processes
(Zhang et al., 2010). This raises the likelihood that disruptions
to the rhythms of individual species by nighttime lighting can
ramify widely.

(2) Visual perception

A wide range of adaptations exist throughout the animal
kingdom to make use of reflected light at different levels and
wavelengths, allowing the recognition of important features
of the environment (Land & Nilsson, 2002; Warrant, 2004;
Warrant & Dacke, 2011); discoveries about the breadth of
the abilities of organisms in this regard continue to be made
(e.g. Kelber, Balkenius & Warrant, 2002; Grémillet et al.,
2005; Allen et al., 2010; Baird et al., 2011; Hogg et al., 2011).
A substantial proportion of animal species are adapted to
see at light levels well below those at which human vision is
effective, in which they can often see colour and navigate well
(Table 3; Warrant, 2004; Warrant & Dacke, 2010, 2011). The
interaction between the intensity and spectral composition
of artificial light and the adaptation of an organism’s eyes
will affect whether visual perception is enhanced, disrupted
or unaffected by light pollution, and hence the potential
downstream behavioural and ecological effects.

The intensity of light at which animals are able to identify
objects varies considerably among species (Table 3). Many
are able successfully to navigate visually and locate resources
at light levels at which human vision is impossible (e.g.
Dice, 1945; Larsen & Pedersen, 1982). A considerable
proportion of nocturnal activity occurs during periods of
‘biologically useful semi-darkness’ (Mills, 2008), making use
of the relatively low light intensities during twilight and
moonlight; however, nocturnal species may also modify or
reduce activity during such periods to avoid competition or
predation (Clarke et al., 1996). Light intensities recorded from
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artificial sources, from both direct illumination a considerable
distance from a source and diffuse sky glow, are well within
the range shown to be effective in enhancing animal vision
and triggering behavioural changes (Tables 1 and 3). Less
well known is the extent to which artificial nighttime light
may disrupt vision systems adapted to dark conditions.

The light-sensitive photoreceptor pigments of animal eyes
vary in the wavelengths of light to which they are most
absorbant. Colour is perceived as a representation in a
limited number of dimensions of the multi-dimensional
spectral reflectance of an illuminated surface, and the
information content of colour perception varies as a function
of the number and spectral sensitivity of different types of
photoreceptor pigments. The human eye contains three
photoreceptors (trichromatic) that are used in photopic
(daytime) vision and maximally absorb light at wavelengths
of 558 (red), 531 (green) or 419 nm (blue) (Dartnall,
Bowmaker & Mollon, 1983). Reptiles and birds commonly
possess four photoreceptor pigment types, increasing the
information content of colour perception across much of
the spectrum [including ultraviolet (UV) light] compared to
the majority of mammals which possess two photoreceptor
pigment types (Osorio & Vorobyev, 2008). The mantis
shrimp Odonatodactlyus represents an extreme case of colour
sensitivity, with 12 photoreceptor pigment types (Marshall
& Oberwinkler, 1999). Large numbers of types potentially
allow organisms better to discriminate between objects of
contrasting spectral reflectance in their environment, and the
relative distribution of photoreceptor sensitivities determines
the portions of the electromagnetic spectrum in which colour
vision is most sensitive.

Changing the spectral properties of artificial lights is
therefore likely to alter the environment which individual
organisms are able to see in different ways. Broader spectrum
light sources such as light-emitting diodes (LEDs) are often
likely to provide improved colour discrimination. This may
allow animals better to navigate, forage for resources, locate
and catch their prey, and identify or display for mating
(such as in the plumage feathers of birds; Hart & Hunt,
2007). The trichromatic and tetrachromatic visual systems of
many hymenopteran and lepidopteran insects allow them to
recognize and compare between the nectar sources provided
by flowering plants (Chittka & Menzel, 1992). The colour
of a flowering plant as perceived by an insect, and the ease
with which the insect can recognize different flowers, are
likely to be improved under broad-spectrum compared to
narrow-spectrum lighting conditions. Changing the spectral
composition of artificial light could therefore affect the
competitive fitness of animals in a variety of ways. Given the
current shift in lighting technology towards broader spectrum
light sources, future research into the impact of different
artificial light sources on the recognition of important
environmental signals by animal groups is clearly necessary.

(3) Spatial orientation and light environment

Many organisms use lightscapes as cues for directional move-
ment (Tuxbury & Salmon, 2005; Ugolini et al., 2005; Warrant

& Dacke, 2011). The restructuring of these lightscapes
by light pollution can thus result in these movements
being disrupted. Examples of such disruption have been
documented for moths and other insects (e.g. Frank, 1988),
frogs (Baker & Richardson, 2006), reptiles (e.g. Salmon et al.,
1995), birds (e.g. Gauthreaux & Belser, 2006; Rodríguez
et al., 2012), and mammals (Beier, 1995; Rydell, 2006).

The widespread attraction of moth species to nighttime
lights has long been exploited in the design of traps for their
capture. The reasons for such disruption of their natural
movement patterns remain to be fully determined, although
interference with the use of moonlight for navigation is likely
important (Warrant & Dacke, 2011). Many insects, including
members of the Hymenoptera, Lepidoptera and Coleoptera,
can navigate using the pattern of polarized celestial light in
the sky (e.g. Dacke et al., 2003). The use of UV light as opposed
to other wavelengths to detect polarized light patterns has
been postulated to be advantageous because the degree of
polarized light scattered downwards from clouds and forest
canopies is higher in the UV (Barta & Horváth, 2004). The
natural signal is diminished by urban sky glow (Kyba et al.,
2011b), and through this effect variation in sky glow may
potentially explain geographic differences in the response
of moth-trap catches to phases of the moon (Nowinsky &
Puskás, 2010). Whether flight-to-light behaviour is driven
by the disruption of natural polarized light patterns alone
seems unlikely as this behaviour occurs even with artificial
lights which emit no UV component (van Langevelde et al.,
2011). However, the use of polarized UV light detection
for navigation by insects may explain why flight-to-light
behaviour is disproportionately associated with emissions at
shorter wavelengths (van Langevelde et al., 2011). Polarized
light patterns reflected back from the ground can also be used
to locate water bodies due to the polarizing nature of their
surfaces. Indeed, a number of cases exist where insects have
been attracted to sources of polarized light reflected back
from anthropogenic structures such as wet asphalt roads,
leading to increasing concern over the deleterious effects
of these and other light polarizing anthropogenic structures
(Horváth et al., 2009). It seems likely that such effects may
be exacerbated by the introduction of artificial lighting,
although ecological case studies have not to our knowledge
been documented.

Beetles of the family Lampyridae are notable for their
use of bioluminescence in mate location. It is possible that
artificial light is playing a significant role in the decline of
these taxa, due to disruption of mate location (Lloyd, 2006).

Migrating birds utilize at least two mechanisms for
navigation that may be disrupted by artificial lighting.
Magnetoreception is considered to be the principal mode
of orientation. The detection systems for magnetoreception
include the magnetic-field-dependent orientation of paired
radical molecules in the photopigment that forms during
photon absorption, and the presence of magnetite within
the beak (Wiltschko et al., 2010). Migration direction has
been demonstrated to be determined using the blue and
green photoreceptors in European robins Erithacus rubecula
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(Wiltschko et al., 2007), while red light disrupts migration
direction in silvereyes Zosterops l. lateralis (Wiltschko et al.,
1993). This has led to calls for the spectral composition
of artificial lighting to be managed to mitigate against
disorientation of birds (Poot et al., 2008), however the level
of disorientation caused by particular wavelengths of light
appears to vary according to intensity, and is not restricted
to red lights alone (Wiltschko et al., 2010).

In addition to possessing a magnetic compass for
orientation, birds are also thought to calibrate this compass
using celestial light during twilight or at night (Cochran,
Mouritsen & Wikelski, 2004). In some species the mechanism
of calibration has been demonstrated to be the detection
of polarized light patterns during sunrise and sunset (e.g.
Muheim, Phillips & Akesson, 2006). However, as is the
case with insects, whether artificial lighting can affect these
patterns, and the consequences this may have for navigation,
are currently unknown.

In addition to the above examples of movement
towards light, many motile organisms exhibit light-avoidance
behaviours (e.g. Moore et al., 2000; Buchanan, 2006;
Boscarino et al., 2009). It seems extremely likely that for
many such taxa the avoidance of artificial illumination will
result in reduction in the space and other resources available
to them (e.g. Kuijper et al., 2008). One of the ecologically most
significant consequences of negative phototropic behaviour
is the widespread diel migration of zooplankton in aquatic
systems (e.g. Moore et al., 2000) which would appear to
be sensitive to levels of light oscillation well below those
produced by artificial illumination (Berge et al., 2009).

IV. CONCLUSIONS

(1) As human communities and lighting technologies
develop, artificial light increasingly encroaches on dark
refuges in space, in time, and across wavelengths. At a given
latitude, natural light regimes have been relatively consistent
through recent evolutionary time, and the global rapid
growth in artificial light represents a potentially significant
perturbation to the natural cycles of light and darkness.
Natural light is utilized by organisms both as a resource
and a source of information about their environment, and
artificial light has the potential to disrupt the utilization of
resources and flow of information in ecosystems.

(2) A broad set of case studies of ecological implications
of light pollution have been documented. Across a wide
range of species, there is evidence that artificial light affects
processes including primary productivity, partitioning of
the temporal niche, repair and recovery of physiological
function, measurement of time through interference with the
detection of circadian, lunar and seasonal cycles, detection of
resources and natural enemies and navigation. However, the
effects on population- or ecosystem-level processes, such
as mortality, fecundity, community productivity, species
composition and trophic interactions are poorly known.
Furthermore, the studies identifying these processes to

date are scattered within literature from a wide range of
disciplines, are strongly weighted towards higher vertebrates
and ecosystems and largely lack synthesis within a common
mechanistic framework.

(3) We propose a framework that focuses foremost on the
interactions between the ways in which artificial lighting
alters natural light regimes (spatially, temporally, and
spectrally), and the mechanisms by which light influences
biological systems, particularly the distinction between light
as a resource and light as an information source. Such a
framework focusses attention on the need to identify general
principles that apply across species and ecosystems, and
integrates understanding of physiological mechanisms with
their ecological consequences.

(4) Reviewing the evidence for each of the combinations
of this cross-factoring particularly highlights: (i) the potential
influence of nighttime lighting at all levels of biological
organisation (from cell to ecosystem); (ii) the significant
impact that even low levels of nighttime light pollution
can have; and (iii) the existence of major research gaps in
understanding of the ecological impacts of light pollution.

(5) Future research on the ecological impacts of light
pollution needs to address several key issues: (i) to what
extent does the disruption of natural light regimes by artificial
light influence population and ecosystem processes, such
as mortality and fecundity rates, species composition and
trophic structure; (ii) what are the thresholds of light intensity
and duration at different wavelengths above which artificial
lighting has significant ecological impacts; and (iii) how large
do ‘dark refuges’, where the intensity and/or duration of
artificial light falls below such thresholds, need to be to
maintain natural ecosystem processes?
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