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The development of electric lighting technology has trans-
formed human societies, lengthening the time available for 
both work and pleasure1. Associated with human settlement, 

transport networks and industry, it has also profoundly altered the 
natural night-time environment. Large areas of the Earth now expe-
rience light that differs from natural regimes in timing, intensity 
and spectrum2,3. Nearly a quarter of the global land area already 
lies under artificially light-polluted night-time skies4. The area 
experiencing direct emissions from artificial light sources is esti-
mated currently to be expanding at approximately 2% per annum, 
with localities that were previously lit brightening further at a  
similar rate5.

Artificial light at night (ALAN) is predicted to constitute a 
significant anthropogenic pressure on natural biological systems 
because (1) such systems are organized foremost by light, and 
particularly by daily and seasonal cycles of light and dark6–8, and 
(2) there have been no natural analogues, at any timescale, to the 
form, extent, distribution, timing or rate of spread of artificial light-
ing3. More obvious impacts like delayed retention of leaves on trees 
close to streetlights and attraction of insects and birds to outdoor 
lights, have long been documented9–11. However, particularly the 
last decade has seen rapid growth in the number of empirical stud-
ies testing for the impacts of ALAN on a broad array of biologi-
cal phenomena across a wide diversity of organisms (for example,  
refs. 12–16). Although there have been qualitative reviews of this  
literature2,17,18, quantitative analyses and understanding of the fre-
quency and strength of the biological impacts of ALAN are lacking.

In this study, we report the results of a meta-analysis that 
takes into account the hierarchical structure of data due to the 
non-independence of several outcomes coming from the same 
study19,20, to build a quantitative understanding of the biologi-
cal impacts of ALAN on a variety of responses from organisms 
and ecological communities. After a systematic search, we iden-

tified 126 publications from the peer-reviewed literature testing 
for the impacts of ALAN on organisms. Each individual measure 
was assigned to one of five major response categories: organismal 
physiology; seasonal phenology; life history traits; daily activity 
patterns; and population/community. The entire dataset covered a 
wide range of different measurements for each of the five categories 
and of different study organisms and habitats and included field and 
laboratory studies.

Results and discussion
Overall, the dataset was dominated by physiological, life history trait 
and population/community-based measures, ranging from strong 
negative to strong positive responses to ALAN exposure (Fig. 1).  
Thirty-five studies documented 338 observations reporting the 
impact on organismal physiology, 7 studies yielded 35 observations 
reporting the impact on organismal phenology, 58 studies reported 
411 life history measures, 27 studies described 139 daily activity 
measures and 42 studies provided 381 observations of the impact 
on populations and ecological communities. We organized these 
measures into subcategories within each of the five main response 
categories (Methods and Fig. 2). This led to the exclusion of 196 
measures from the analysis of subcategories because these were only 
included if they had measures from at least 5 different studies.

Regarding the physiological measures, the effect sizes for the 
hormone levels (mostly melatonin) indicated that these were con-
sistently and markedly reduced across all studies included (Fig. 2b). 
By contrast, gene expression varied markedly in effect sizes, includ-
ing a number of very strong positive responses (Fig. 2b). The impact 
on these two measures is important because this can have knock-on 
effects on other physiological parameters, such as health and alert-
ness. The other three physiological measures (immune and stress 
responses and glands/structures) did not show an overall response 
to ALAN; however, the frequency distributions of effect sizes  
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for immune and stress responses (Fig. 2d–f) show that this does  
not mean that ALAN has no impact. Rather, depending on the  
conditions of the study, the response may be either positive or  
negative. For stress responses, the frequency distribution of effect 
sizes is bimodal, with peaks at low negative and higher positive  
values (Fig. 2e).

While single studies found evidence of phenological shifts in 
plants under ALAN exposure21, our dataset suggests that across 
plants and birds both positive and negative effect sizes for phenol-
ogy have been documented (Fig. 2g), with no evidence for an over-
all consistent directional shift.

Among measures of life history traits (the term being used 
broadly), overall measures of cognition (mostly the performance 
of rodents in experimental tests) and offspring number were nega-
tively impacted by ALAN; measures of predation were positively 
impacted (Fig. 2). Most conspicuously, and including some high 
effect sizes, measures of seafinding by young turtles (that is, the 
ability to find the right direction towards the sea) were regularly 
strongly impacted by ALAN (Fig. 2h), reflecting movement towards 
the (landward) light source. This has significant consequences for 
turtle survival, although the impact can be mitigated to some degree 
by careful design, positioning and shielding of lights22.

ALAN impacts were particularly marked for daily activity pat-
terns with, overall, the onset of activity being pushed earlier and its 
cessation being delayed (Fig. 2). This did not manifest as an over-
all strong effect of ALAN on the duration of diurnal or nocturnal 
activity; however, in both cases the impacts were very varied and 
included strong positive and negative effect sizes (Fig. 2q,r). This 
highlights the diversity of influences of ALAN on different species, 

increasing the duration of activity for some while reducing it for 
others23,24 and acting as an attractor for some while as a repellent 
for others25. We looked in more detail at this directional variation 
for two animal groups, rodents and birds, which have been dis-
proportionately well studied. For rodents, the duration of activ-
ity of both diurnal and nocturnal species tended to be reduced 
by exposure to ALAN (Fig. 3a). In contrast, for birds—with all of 
those included strictly diurnal—ALAN was more likely to lead to 
an extension of the duration of their activity, with onset and cessa-
tion of singing and foraging showing especially marked responses. 
This goes further in some groups, such that diurnal species can 
use the so-called ‘night-time niche’ to extend their activity into the 
night-time15.

We found little evidence for a strong overall or net impact of 
ALAN on the abundance of species or the diversity of commu-
nities (Fig. 2). This outcome could potentially be explained as a 
consequence of the variation in, and possible trade-offs and syn-
ergies between, individual-level physiological, phenology, life his-
tory and activity responses. Indeed, abundance responses showed 
some of the greatest variation in effect sizes, from strongly negative 
to strongly positive, of any measured biological impacts of ALAN 
(Fig. 2s). For bats, for which the impacts of ALAN have attracted 
disproportionate scientific and policy attention26, activity (used as 
a measure of the presence or abundance of species rather than of 
the timing of individual movements) did not show an overall strong 
negative response (Fig. 2). However, while some effect sizes were 
positive, there was also a long tail of marked negative responses, 
highlighting that some bat species are strongly repelled by artificial 
light (Fig. 2t). Such complex patterns of responses may be typical of 
many taxonomic groups, with the overall response being driven by 
those species that are most dominant.

Species interactions are an important building block of ecologi-
cal community structure. Predation, the most frequently studied 
interaction, was typically increased by ALAN exposure (Fig. 2m), 
indicating that interactions between species can be highly sensitive 
to ALAN and are key for understanding how whole communities 
are impacted (as shown in food webs15 and pollination networks13). 
In turn, this likely leads to impacts of ALAN on ecosystem func-
tions, but so far these have been little studied13,15; therefore, they 
could not be separately addressed in this meta-analysis.

ALAN might be predicted to impact nocturnal species more 
strongly than diurnal ones because the loss of light conditions (dark 
or light) under which organisms are active is probably more limit-
ing than is their extension. There is evidence in our dataset that this 
is indeed the case. For life history and activity measures, the mean 
effect sizes were more negative for nocturnal species than for diur-
nal ones (Fig. 3b); however, there was a more negative response for 
physiological measures in diurnal species.

Overall, for most variables we did not find evidence for pub-
lication bias in effect sizes, in particular there was no evidence 
of P-hacking in any of the variables and no evidence of funnel 
plot asymmetry for most of them (Supplementary Table 1 and 
Supplementary Fig. 1). There was some statistical evidence for fun-
nel plot asymmetry for hormone levels, seafinding by turtles and 
activity on and offset as well as for gene expression, gland structure 
and bat activity but these showed no strong overall directional effect 
size (Supplementary Table 1 and Supplementary Fig. 1). However, 
in all of these cases, this asymmetry may be driven by the biological 
nature of these responses rather than being the result of publication 
bias. For example, effect sizes for hormone levels predominantly 
concern the suppression of melatonin levels by artificial light, with 
overproduction being an unlikely outcome. Likewise, for seafinding 
in turtles, any diversion of movement from the direction of the sea 
is negative for the individuals concerned and results in a negative 
effect size; any normal movement would be regarded as an absence 
of effect (rather than a positive one).

Population/
community

32%

Organismal
physiology

25%

Activity
patterns

13%

Life history
traits
27%
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3%

Fig. 1 | Physiological, phenological, life history trait, activity pattern and 
population/community-based responses to AlAN exposure. Single effect 
size measures (Hedges’ d with 95% confidence interval) with responses 
from organismal physiology (blue), phenology (grey), life history traits 
(light blue), activity patterns (orange) and population/community (red) 
arranged in sequence according to increasing effect size (negative to 
positive). The circle dashed line indicates the zero effect size and the solid 
lines at effect sizes of 10 and −10. The pie chart indicates the proportion of 
measures belonging to each of the five categories.
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Across the different studies, the levels of ALAN used in the 
experiments and observations were skewed towards low lighting of 
around 1–2 lx (such levels can occur approximately 10–20 m from an 
isolated streetlight) but covered the whole range up to 100 lx (similar 
to levels beneath stadium-type floodlighting), which we set as the 
upper limit for realistic ALAN exposure in nature. Lux is a measure 
of luminous flux per unit area based on human photopic vision but 
is typically used in studies of the biological effects of ALAN because 
it enables a direct link to illuminance as commonly measured in the 
environment and employed in the design and mitigation of artificial 
lighting systems. A meta-regression analysis found no relationship 
between the intensity of artificial light and effect size magnitude 
for the responses across all categories (Fig. 3c). Thus, while posi-
tive dose–response relationships have been documented for some 
individual physiological and behavioural responses to ALAN27, 
there is little evidence for an overall effect across a diversity of such 
responses. This is probably because of the wide variation in the form 
of dose–response relationships for individual biological responses 
to ALAN because in some cases no simple such relations exist and 
because of variation in spectral sensitivities. Consequently, the bio-
logical impact of even low intensities of ALAN may be marked15,28.

Notwithstanding the widespread nature of the biological effects 
of ALAN demonstrated by the results reported in this article, 
marked biases continue to exist in the taxonomic groups and regions 
for which empirical studies of these effects have been conducted. 
Of the 1,304 effect sizes included in the meta-analysis, 24 were for 
microbial communities, 143 for plants, 388 for invertebrates and 
746 for vertebrates. The dataset includes almost double the number 
of field studies (82) compared to laboratory experiments (42), with 

the majority of field studies in the meta-analysis from Europe (46), 
North America (17) and Australia (7). Tropical regions were mark-
edly under-represented, despite the prediction that effects of ALAN 
could be particularly strong at low latitudes because of the limited 
natural seasonal variation in the lengths of daylight and night-time6. 
Further, more research is needed on the response of whole eco-
logical communities and their functions to ALAN exposure29; the 
strong response of trophic behaviour to ALAN suggests that species 
interactions change and with them whole community structures 
and their functions will shift. Interactions with other human pres-
sures, especially climate change, are of particular interest since for 
species that exploit the night-time niche their behaviour at night is 
often temperature-dependent.

Conclusions
The results reported in this article have significant implications for 
the much-discussed mitigation of the effects of ALAN on the natural 
environment30,31. First, they underline how widespread these effects 
are, including on diurnal species, and that where possible mitigation 
should be routine rather than limited to places and times when taxa 
perceived to be of particular concern (for example, bats) are active. 
Second, they highlight the challenge of making recommendations 
to regulate the maximum intensities of particular kinds of lighting, 
given that marked biological impacts of ALAN occur across a wide 
range of intensities including very low lighting levels (below 1 lx). 
Third, we show that ALAN especially changes the physiology and 
behaviour of organisms by affecting hormone levels, the onset of 
daily activity, feeding and phototaxis but typically with a less strong 
impact on particular community responses, such as abundance and 
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Fig. 2 | Effect sizes for the measures from the main categories. a, Effect sizes (Hedges’ d) with post-mean and 95% credible intervals based on results 
from MCMCglmm for each variable from the five main categories (organismal physiology, phenology, life history traits, activity patterns and population/
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species richness; this suggests that the impact on community struc-
ture and diversity might be less clear and depends on the impacts 
on key players (species or groups29). Although species richness was 
not systematically affected in our study, it is possible that ALAN is 
often altering community composition (that is, beta diversity) so 
that sensitive species are being replaced.

Concern has repeatedly been expressed about the impacts of the 
loss of natural night-time light cycles on humans that span from 
their physiology to their psychological sense of place9. In this study, 
we show that a broad array of marked impacts also occur on other 
organisms.

Methods
Literature search. We identified relevant literature using keyword searches in 
Web of Science (we used the ‘All databases’ option including Web of Science Core 
Collection, BIOSIS Citation Index, KCI-Korean Journal Database, MEDLINE, 
Russian Science Citation Index and SciELO Citation Index) and Scopus, 
finding any available papers published until 22 October 2019. (We constrained 
our searches to these databases to focus on peer-reviewed studies and tested 

for publication bias.) We used the terms: “TS = ((‘Artificial light* at night’ OR 
‘Light* pollution’ OR ‘Light* at night’ OR ‘night time light*’) AND (‘species’ 
OR ‘ecosystem*’ OR ‘ecological commun’) AND (‘abundance’ OR ‘behaviour’ 
OR ‘richness’ OR ‘reproduction’ OR ‘mating’ OR ‘*diversity’ OR ‘composition’ 
OR ‘predation’ OR ‘herbivory’ OR ‘activity’ OR ‘timing’ OR ‘physiology’ OR 
‘flight to light*’ OR ‘melatonin’ OR ‘development’ OR ‘trophic’ OR ‘biomass’ OR 
‘pollination’))”. After removing 352 duplicates, combining the searches resulted 
in 614 publications that were screened for the inclusion criteria. To be included 
in the meta-analysis, studies needed to (1) test for ALAN effects on organisms 
either in the field or the laboratory; (2) have a control group that was exposed to 
natural light levels at night (or a dark control) and treatment groups with exposure 
to ALAN up to 100 lx—studies with higher levels were excluded since these are 
unlikely to occur in the field; (3) have at least 2 replicates per treatment; and (4) 
contain data on means, estimation of variation and sample size. If only box plots 
were presented, we extracted the median and interquartile range32. This resulted in 
126 papers, with a total of 1,304 effect size measures (refs. 12,13,15,16,25,27,28,33–151).

Categorization of effect size. We categorized the effect size measures into 
five different main groups: response to exposure to ALAN of (1) organismal 
physiology, (2) phenology, (3) life history traits, (4) activity patterns (for example, 
daily diurnal, nocturnal activity) or (5) population/community. For the analyses, 
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we were interested in which factors drive the response within each category. We 
selected subcategories within each of the five major categories that we thought 
described the dataset best. For each subcategory to be included in the analysis, it 
needed to have data that were extracted from at least five different studies. Below, 
we briefly explain the subcategories.

Organismal physiology. Several studies measured the impact of ALAN on the level 
of gene expression and hormones produced. We also included immune response 
and stress response. Gland structure includes the size of glands but also the size of 
structures adjacent to them and neuronal structures.

Phenology. This describes seasonal timings of events such as flowering dates in 
plants and egg-laying in birds (measured in Julian days).

Life history traits. Life history traits are traits that affect the life table of an organism 
and therefore its fitness. Based on the biology of the different species studied, 
the different effect sizes were classified as either having a positive or negative 
relationship with fitness. To express the fitness consequences of all effect sizes, 
effect sizes were multiplied by −1 when the relationship between the trait and 
fitness was negative. Thus, effect sizes larger than zero express a benefit for the 
organism, whereas the opposite is true for values lower than zero. A total of 
seven categories were considered: seafinding in turtles; predation risk; body size; 
cognition; feeding; predation; and reproductive output.

A large number of effect sizes concern sea turtles and their ability to find the 
sea after emerging from eggs or after egg-laying by females. Turtles are expected 
to reach the sea as fast as possible to avoid predation and other risks, so increased 
time or distance in doing so and large differences in the direction of a straight 
line between egg emergence or laying and the sea are considered as negatively 
related with fitness. Predation risk is a trait negatively related to survival, which 
has been measured in many ways. In this category, most effect sizes come from 
studies of pairwise predator–prey interactions. Predation risk has been measured 
as (the sign after each trait expresses whether the trait is positively or negatively 
associated with fitness): attacks suffered by prey (−); attack attempts by predators 
(−); activity of predators (−); anti-predatory behaviours shown by prey (+); and 
abundance of prey in response to experimental exposure to predators (+). Size 
has been considered as having a positive effect on fitness since larger individuals 
are usually more fecund and live longer. Although considered as an independent 
category, cognition strongly relates to feeding efficiency and survival because 
individuals with poor cognition are less likely to forage efficiently, escape predation 
and ultimately survive. Cognition has been measured with the following traits (the 
sign after each trait expresses whether the trait is positively or negatively related to 
fitness). In rodents, cognition has been measured as the time spent to escape from 
a maze (−) and in birds as the time to solve a cognition test (−). Indirect measures 
of cognition include measuring sleep debt by either estimating sleep debt directly 
on animals (−) or by estimating the concentration of oxalic acid in blood (that is, 
a molecule that signals sleep debt) (−). For primary consumers, the traits included 
are preference over the habitual food source, food consumption, time spent eating 
and food absorption efficiency. Reproduction includes reproductive output, but 
also pre- and post-reproductive behaviours.

Activity patterns. The data for daily activity patterns contain measures of when 
animals started or ceased their activity (mostly measured against sunrise and 
sunset) and the duration of their activity. This resulted in four subcategories: 
activity onset; activity cessation; diurnal activity duration; nocturnal activity 
duration. One study measured the time spent while inactive; this was included in 
activity duration by changing the sign of the effect size.

Population/community. This category mostly contained data on the abundance 
of single species and communities (groups of species, such as functional groups) 
in the presence and absence of ALAN. Bat density is usually estimated indirectly 
as the number of passes, a variable that does not really describe activity but 
an indication of abundance. A few studies looked at the species richness of 
communities (diversity).

Data analysis. The meta-analysis was conducted in R v.3.6.0 (ref. 152) using the 
package metafor version 2.4-0153 to estimate the standardized mean difference 
(Hedges’ d) and corresponding sampling variance for each data point using 
the ‘escalc(measure = ’SMDH’)’ command. These values were then used to fit a 
meta-analytic model in MCMCglmm version 2.2919. To achieve this, the random 
term idh(SE):units was fixed to one in the prior so that all measurement errors could 
be considered as independent of each other. In addition, to account for study-level 
non-independence due to multiple measurements per study, ‘Study’ was included 
as a random effect. The Markov chain Monte Carlo chain ran for 150,000 iterations 
and it was sampled every 50 iterations with the first 50,000 removed as burn-in to 
prevent autocorrelation among subsequent iterations. Autocorrelation between 
consecutive samples was always lower than 0.1 and convergence of the chains was 
inspected visually to ensure that there were no trends in the chain and that posterior 
distributions were not skewed. Significance is reported as the pMCMC statistic19,154. 
Since we did not have any a priori knowledge on the distribution of our data, we 

used a flat prior: the inverse-gamma prior (V = 1, nu = 0.002). Hedges’ d was used 
to compare measures of the variables between treatment and control. We present 
the mean effect size and 95% credible intervals; the mean effect size was considered 
significantly different from 0 if its 95% confidence interval did not include 0.

Further, additional analyses used light intensity in lux as a moderator 
(equivalent to main effects in standard linear models).

Testing for publication bias. For all variables in the meta-analysis, we assessed 
evidence of publication bias. Publication bias implies that studies with low 
effect sizes were less likely to be published than studies with larger effect sizes155. 
However, these assumptions are not always valid and some authors have suggested 
that publication bias is mostly caused by significance levels and P-hacking156. The 
first form of bias was tested using asymmetry in funnel plots of meta-analytic 
residuals against the inverse of their precision (defined as 1/sampling variance)20. 
For multilevel meta-analysis models, funnel plots based on meta-analytic residuals 
(the sum of effect size-level effects and sampling variance effects) are better suited 
than those based on effect sizes157. We interpreted asymmetry in funnel plots 
carefully given the small sample sizes for some of the variables, and the lack of 
bidirectional outcomes for light impact on some traits, which will inevitably lead to 
a biased plot. For example, for turtles, if there is an impact of exposure to ALAN on 
seafinding this will always be negative. Further, we ran Egger’s regressions using the 
meta-analytic residuals as the response variable and precision as the moderator157. 
If the intercept of the Egger’s regression does not overlap zero, estimates from 
the opposite direction to the meta-analytic mean might be missing, which can be 
evidence of publication bias157. P-hacking was tested with the P-curve technique, 
which can provide evidence of P-hacking if values close to a significance level of 
0.05 are over-represented in the data156,158. The P-curve was performed with the 
function pcurve from the dmetar package version 0.0.9000159.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Data collection Data were collected using literature search using Web of Science Database and Scopus.
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Study description To understand the impact of artificial light at night on physiology and behavior of organisms and ecological communities, we conduct 
a meta-analysis, following a systematic search. 

Research sample We identified 126 publications from the peer reviewed literature testing for the impact of ALAN on organisms.

Sampling strategy We identified relevant literature using keyword searches in Web of Science (we used “All databases” including Web of Science Core 
Collection, BIOSIS Citation Index, KCI-Korean Journal Database, MEDLINE, Russian Science Citation Index and SciELO Citation Index) 
and Scopus, finding any available papers published until 22 October 2019 (we constrained our searches to these databases to focus 
on peer-reviewed studies, and tested for publication bias – see below). We used the terms: "TS= (("Artificial light* at night" OR 
"Light* pollution" OR "Light* at night" OR "night time light*") AND ("species" OR "ecosystem*" OR "ecological commun") AND 
("abundance" OR "behaviour" OR "richness" OR “reproduction" OR "mating" OR "*diversity" OR "composition" OR "predation" OR 
"herbivory" OR "activity" OR "timing" OR "physiology" OR "flight to light*" OR "melatonin" OR "development" OR "trophic" OR 
"biomass" OR "pollination"))”. After removing 352 duplicates, combining the searches resulted in 614 publications that were 
screened for inclusion criteria. To be included in the meta-analysis, studies needed to (1) test for ALAN effects on organisms either in 
the field or the lab; (2) have a control group that was exposed to natural light levels at night (or a dark control) and treatment groups 
with exposure to ALAN up to 100 lux - studies with higher levels were excluded as these are unlikely to occur in the field; (3) have at 
least 2 replicates per treatment; and (4) contain data on means, an estimation of variation and sample size. If only box plots were 
presented, we extracted the median and interquartile range. This resulted in 126 papers, with a total of 1304 effect size measures. 

Data collection Data were extracted from publication using reported effect sizes, from figures and supplementary data files.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 
the data are taken

Data exclusions No data were excluded from the overall presentation (Figure 1). We organised the extracted measures into subcategories within 
each of the five main response categories (Fig. 2). This led to the exclusion of 196 measures from the analysis of subcategories 
because these were only included if they had measures from at least five different studies.

Reproducibility All search and inclusion criteria are described in the manuscript, see above.

Randomization n/a

Blinding Three researchers were involved in the literature search and selection process, and compared their independent outcomes and 
discussed less obvious cases.

Did the study involve field work? Yes No
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